121. Best Time to Buy and Sell Stock

121. Best Time to Buy and Sell Stock

Maximum profit you could get in the past

Problem statement

You are given an array prices where prices[i] is the price of a given stock on the i-th day.

You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Example 1

Input: prices = [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.

Example 2

Input: prices = [7,6,4,3,1]
Output: 0
Explanation: In this case, no transactions are done and the max profit = 0.

Constraints

  • 1 <= prices.length <= 10^5.

  • 0 <= prices[i] <= 10^4.

Solution 1: Bruteforce

For each day i, find the day j > i that gives maximum profit.

Code

#include <vector>
#include <iostream>
using namespace std;
int maxProfit(vector<int>& prices) {
    int maxProfit = 0;
    for (int i = 0; i < prices.size(); i++) {        
        for (int j = i + 1; j < prices.size(); j++) {
            if (prices[j] > prices[i]) {
                maxProfit = max(maxProfit, prices[j] - prices[i]);
            }
        }
    }
    return maxProfit;
}
int main() {
    vector<int> prices{7,1,5,3,6,4};
    cout << maxProfit(prices) << endl;
    prices = {7,6,4,3,1};
    cout << maxProfit(prices) << endl;
}
Output:
5
0

Complexity

  • Runtime: O(N^2), where N = prices.length.

  • Extra space: O(1).

Solution 2: Smallest and largest prices

Given a past day i, the future day j > i that gives the maximum profit is the day that has the largest price which is bigger than prices[i].

Conversely, given a future day j, the past day i < j that gives the maximum profit is the day with the smallest price.

Code

#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
int maxProfit(vector<int>& prices) {
    int maxProfit = 0;
    int i = 0;
    while (i < prices.size()) {
        while (i < prices.size() - 1 && prices[i] >= prices[i + 1]) {
            i++;
        }
        auto imax = max_element(prices.begin() + i, prices.end());
        auto imin = min_element(prices.begin() + i, imax);
        maxProfit = max(maxProfit, *imax - *imin);
        i = distance(prices.begin(), imax) + 1;
    }
    return maxProfit;
}
int main() {
    vector<int> prices{7,1,5,3,6,4};
    cout << maxProfit(prices) << endl;
    prices = {7,6,4,3,1};
    cout << maxProfit(prices) << endl;
    prices = {2,4,1,7};
    cout << maxProfit(prices) << endl;
    prices = {2,4,1};
    cout << maxProfit(prices) << endl;
}
Output:
5
0
6
2

Complexity

  • Runtime: O(N), where N = prices.length.

  • Extra space: O(1).

Solution 3: Only the smallest price

Given a future day j, the past day i that gives the maximum profit is the day with minimum price.

Code

#include <vector>
#include <iostream>
using namespace std;
int maxProfit(vector<int>& prices) {
    int maxProfit = 0;
    int minPrice = prices[0];
    for (int i = 1; i < prices.size(); i++)  {
        minPrice = min(minPrice, prices[i]);
        maxProfit = max(maxProfit, prices[i] - minPrice);
    }
    return maxProfit;
}
int main() {
    vector<int> prices{7,1,5,3,6,4};
    cout << maxProfit(prices) << endl;
    prices = {7,6,4,3,1};
    cout << maxProfit(prices) << endl;
    prices = {2,4,1,7};
    cout << maxProfit(prices) << endl;
    prices = {2,4,1};
    cout << maxProfit(prices) << endl;
}
Output:
5
0
6
2

Complexity

  • Runtime: O(N), where N = prices.length.

  • Extra space: O(1).

References

Thanks for reading. Feel free to share your thought about my content and check out my FREE book “10 Classic Coding Challenges”.