Problem statement
Given a set of distinct positive integers nums
, return the largest subset answer
such that every pair (answer[i], answer[j])
of elements in this subset satisfies:
answer[i] % answer[j] == 0
, oranswer[j] % answer[i] == 0
.
If there are multiple solutions, return any of them.
Example 1
Input: nums = [1,2,3]
Output: [1,2]
Explanation: [1,3] is also accepted.
Example 2
Input: nums = [1,2,4,8]
Output: [1,2,4,8]
Constraints
1 <= nums.length <= 1000
.1 <= nums[i] <= 2 * 10^9
.All the integers in
nums
are unique.
Solution 1: Bruteforce with Dynamic programming
Note that the condition a % b == 0
is called a
is divisible by b
. In mathematics, it can also be called b
divides a
and be written as b | a
.
The symmetry of the divisibility criteria means it does not count the ordering of the answer
. You could sort the vector nums
before trying to find the longest subset answer = [answer[0], answer[1], ..., answer[m]]
where answer[i] | answer[j]
with all 0 <= i <= j <= m
.
Now assuming the nums
were sorted. For each i
, you need to find the largest subset maxSubset[i]
starting from nums[i]
. And the final answer is the largest one among them.
Example 3
Input: nums = [2, 4, 3, 9, 8].
Sorted nums = [2, 3, 4, 8, 9].
maxSubset[0] = [2, 4, 8].
maxSubset[1] = [3, 9].
maxSubset[2] = [4, 8].
maxSubset[3] = [8].
maxSubset[4] = [9].
Output: [2, 4, 8].
Note that for a sorted nums
, if nums[i] | nums[j]
for some i < j
, then maxSubset[j]
is a subset of maxSubset[i]
.
For example, maxSubset[2]
is a subset of maxSubset[0]
in Example 3 because nums[0] = 2 | 4 = nums[2]
.
That might lead to some unnecessary recomputing. To avoid it, you could use dynamic programming to store the maxSubset[j]
you have already computed.
Code
#include <iostream>
#include <vector>
#include <unordered_map>
#include <algorithm>
using namespace std;
//! @brief compute the maxSubset[i] starting from nums[i]
//! and store it to _map[i]
//! @note nums is sorted
vector<int> largestDivisibleSubsetOf(vector<int>& nums, int i,
unordered_map<int, vector<int> >& _map) {
if (_map.find(i) != _map.end()) {
return _map[i];
}
vector<int> maxSubset{nums[i]};
if (i == nums.size() - 1) {
_map.insert({i, maxSubset});
return maxSubset;
}
for (int j = i + 1; j < nums.size(); j++) {
if (nums[j] % nums[i] == 0) {
auto subset = largestDivisibleSubsetOf(nums, j, _map);
subset.push_back(nums[i]);
if (maxSubset.size() < subset.size()) {
maxSubset = subset;
}
}
}
_map.insert({i, maxSubset});
return maxSubset;
}
vector<int> largestDivisibleSubset(vector<int>& nums) {
if (nums.size() <= 1) {
return nums;
}
unordered_map<int, vector<int> > _map;
sort(nums.begin(), nums.end());
vector<int> answer;
for (int i = 0; i < nums.size(); i++) {
auto maxSubset = largestDivisibleSubsetOf(nums, i, _map);
if (answer.size() < maxSubset.size()) {
answer = maxSubset;
}
}
return answer;
}
void printSolution(vector<int>& result) {
cout << "[";
for (auto& v : result) {
cout << v << ",";
}
cout << "]" << endl;
}
int main() {
vector<int> nums{2,1,3};
auto answer = largestDivisibleSubset(nums);
printSolution(answer);
nums = {1,2,4,8};
answer = largestDivisibleSubset(nums);
printSolution(answer);
}
Output:
[2,1,]
[8,4,2,1,]
Complexity
Runtime:
O(2^N)
, whereN = nums.length
.Extra space:
O(N^2)
.
Solution 2: Store only the representative of the maxSubset
In the brute-force solution above, you used a big map
to log all maxSubset[i]
though you need only the largest one at the end.
One way to save memory (and eventually improve performance) is just storing the representative of the chain relationship between the values nums[i]
of the maxSubset
through their indices mapping.
That means if maxSubset[i] = [nums[i0] | nums[i1] | ... | nums[iN1]] | nums[iN]]
, you could log pre[iN] = iN1
, ..., prev[i1] = i0
.
Then all you need to find is only the last index iN
of the largest maxSubset
.
Example 3
Input: nums = [2, 4, 3, 9, 8].
sorted nums = [2, 3, 4, 8, 9].
pre[0] = -1 (there is no nums[i] | nums[0]).
pre[1] = -1 (there is no nums[i] | nums[1]).
pre[2] = 0 (nums[0] is the only divisor of nums[2]).
pre[3] = 2 (for the largest subset though nums[0] and nums[2] are both divisors of nums[3]).
pre[4] = 1 (nums[1] is the only divisor of nums[4]).
iN = 3 ([2 | 4 | 8] is the largest maxSubset).
Output: [8, 4, 2].
Code
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
vector<int> largestDivisibleSubset(vector<int>& nums) {
if (nums.size() <= 1) {
return nums;
}
sort(nums.begin(), nums.end());
int maxSize = 0; // the size of the resulting subset
int maxindex = 0; // nums[maxindex] is the largest value of the resulting subset
vector<int> subsetSize(nums.size(), 1); // subsetSize[i] stores the size of the
// largest subset having biggest number nums[i]
vector<int> pre(nums.size(), -1); // pre[i] stores the previous index of
// i in their largest subset
for (int i = 0; i < nums.size(); i++) {
// find the previous nums[j] that make subsetSize[i] largest
for (int j = i - 1; j >= 0; j--) {
if (nums[i] % nums[j] == 0 && subsetSize[j] + 1 > subsetSize[i]) {
subsetSize[i] = subsetSize[j] + 1;
pre[i] = j;
}
}
// update the largest subset
if (maxSize < subsetSize[i]) {
maxSize = subsetSize[i];
maxindex = i;
}
}
vector<int> result;
while (maxindex != -1) {
result.push_back(nums[maxindex]);
maxindex = pre[maxindex];
}
return result;
}
void printSolution(vector<int>& result) {
cout << "[";
for (auto& v : result) {
cout << v << ",";
}
cout << "]" << endl;
}
int main() {
vector<int> nums{2,1,3};
auto result = largestDivisibleSubset(nums);
printSolution(result);
nums = {1,2,4,8};
result = largestDivisibleSubset(nums);
printSolution(result);
}
Output:
[2,1,]
[8,4,2,1,]
Complexity
Runtime:
O(N^2)
, whereN = nums.length
.Extra space:
O(N)
.
Key takeaway
In this interesting problem, we use index mapping to simplify everything. That improves the performance in both runtime and memory.
References
Thanks for reading. Feel free to share your thought about my content and check out my FREE book “10 Classic Coding Challenges”.