Problem statement
Given an array nums
of size n
, return the majority element.
The majority element is the element that appears more than ⌊n / 2⌋
times. You may assume that the majority element always exists in the array.
Example 1
Input: nums = [3,2,3]
Output: 3
Example 2
Input: nums = [2,2,1,1,1,2,2]
Output: 2
Constraints
n == nums.length
.1 <= n <= 5 * 10^4
.-2^31 <= nums[i] <= 2^31 - 1
.
Follow-up:
Could you solve the problem in linear time and in O(1)
space?
Solution 1: Counting the frequency
Code
#include <vector>
#include <iostream>
#include <unordered_map>
using namespace std;
int majorityElement(vector<int>& nums) {
unordered_map<int,int> freq;
const int HALF = nums.size() / 2;
for (int a : nums) {
freq[a]++;
if (freq[a] > HALF) {
return a;
}
}
return nums[0];
}
int main() {
vector<int> nums{3,2,3};
cout << majorityElement(nums) << endl;
nums = {2,2,1,1,1,2,2};
cout << majorityElement(nums) << endl;
}
Output:
3
2
Complexity
Runtime:
O(n)
, wheren = nums.length
.Extra space:
O(n)
.
Solution 2: Sorting and picking the middle element
Code
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
int majorityElement(vector<int>& nums) {
sort(nums.begin(), nums.end());
return nums[nums.size()/2];
}
int main() {
vector<int> nums{3,2,3};
cout << majorityElement(nums) << endl;
nums = {2,2,1,1,1,2,2};
cout << majorityElement(nums) << endl;
}
Output:
3
2
Complexity
Runtime:
O(nlogn)
, wheren = nums.length
.Extra space:
O(1)
.
Solution 3: Partial sort
Since you are interested in only the middle element after sorting, the partial sorting algorithm std::nth_element
can be used in this case to reduce the cost of the full sorting.
Code
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
int majorityElement(vector<int>& nums) {
const int mid = nums.size() / 2;
std::nth_element(nums.begin(), nums.begin() + mid, nums.end());
return nums[mid];
}
int main() {
vector<int> nums{3,2,3};
cout << majorityElement(nums) << endl; // 3
nums = {2,2,1,1,1,2,2};
cout << majorityElement(nums) << endl; // 2
}
Output:
3
2
Complexity
Runtime:
O(n)
, wheren = nums.length
.Extra space:
O(1)
.
Modern C++ notes
In the code of Solution 3, the partial sorting algorithm std::nth_element
will make sure for all indices i
and j
that satisfy 0 <= i <= mid <= j < nums.length
,
nums[i] <= nums[mid] <= nums[j].
In other words, nums[mid]
divides the array nums
into two groups: all elements that are less than or equal to nums[mid]
and the ones that are greater than or equal to nums[mid]
.
Those two groups are unsorted. That is why the algorithm is called partial sorting.
References
Thanks for reading. Feel free to share your thought about my content and check out my FREE book “10 Classic Coding Challenges”.