1680. Concatenation of Consecutive Binary Numbers
Bit manipulation, mathematics and recursion
Problem statement
Given an integer n
, return the decimal value of the binary string formed by concatenating the binary representations of 1
to n
in order, modulo 10^9 + 7
.
Example 1
Input: n = 1
Output: 1
Explanation: "1" in binary corresponds to the decimal value 1.
Example 2
Input: n = 3
Output: 27
Explanation: In binary, 1, 2, and 3 corresponds to "1", "10", and "11".
After concatenating them, we have "11011", which corresponds to the decimal value 27.
Example 3
Input: n = 12
Output: 505379714
Explanation: The concatenation results in "1101110010111011110001001101010111100".
The decimal value of that is 118505380540.
After modulo 10^9 + 7, the result is 505379714.
Constraints
1 <= n <= 10^5
.
Solution: Recursive
There must be some relationship between the result of n
and the result of n - 1
.
First, let us list some first values of n
.
For
n = 1
: the final binary string is"1"
, its decimal value is1
.For
n = 2
: the final binary string is"110"
, its decimal value is6
.For
n = 3
: the final binary string is"11011"
, its decimal value is27
.
Look at n = 3
, you can see the relationship between the decimal value of "11011"
and the one of "110"
(of n = 2
) is:
27 = 6 * 2^2 + 3
Dec("11011") = Dec("110") * 2^num_bits("11") + Dec("11")
Result(3) = Result(2) * 2^num_bits(3) + 3.
The same equation for n = 2
:
6 = 1 * 2^2 + 2
Dec("110") = Dec("1") * 2^num_bits("10") + Dec("10")
Result(2) = Result(1) * 2^num_bits(2) + 2.
In general, the recursive relationship between n
and n - 1
is:
Result(n) = Result(n - 1) * 2^num_bits(n) + n.
Code
#include <cmath>
#include <iostream>
int concatenatedBinary(int n) {
unsigned long long result = 1;
for (int i = 2; i <= n; i++) {
const int num_bits = std::log2(i) + 1;
result = ((result << num_bits) + i) % 1000000007;
}
return result;
}
int main() {
std::cout << concatenatedBinary(1) << std::endl;
std::cout << concatenatedBinary(3) << std::endl;
std::cout << concatenatedBinary(12) << std::endl;
}
Output:
1
27
505379714
Complexity
Runtime:
O(n)
.Extra space:
O(1)
.
References
Thanks for reading. Feel free to share your thought about my content and check out my FREE book “10 Classic Coding Challenges”.